conference on Discrete Mathematics. ISBN 978-93-91077-53-2. 2021; 318 - 322.

On the Upper Monophonic Global Domination Number of a Graph

V. Selvi and *V. Sujin Flower

Department of Mathematics, Holy Cross College (Autonomous), Nagercoil - 4 Affiliated to Manonmaniam Sundaranar University, Tirunelveli - 627012 *Corresponding Author - Email: sujinflower@gmail.com

ABSTRACT

A monophonic global dominating set M of G is called a minimal monophonic global dominating set of G if no proper subset of M is a monophonic global dominating set of G. The maximum cardinality of a minimal monophonic global dominating set of G is the upper monophonic global dominating set of G, denoted by $\bar{\gamma}_m^+(G)$. This concept's general qualities are investigated. The upper monophonic global domination number of some family of graphs is determined. It is shown that for any positive integers a and b with $2 \le a \le b$, there exists a connected graph G such that $\gamma_m(G) = a$ and $\bar{\gamma}_m^+(G) = b$. where $\gamma_m(G) = a$ is the monophonic global domination number of G.

Keywords: Domination number, Global domination number, Monophonic number, Monophonic global domination number, Upper monophonic global domination number.

AMS Subject Classification: 05C12,05C38.

1. Introduction

A finite, undirected connected graph with no loops or many edges is referred to as a graph G = (V, E) The letters n and m respectively, stand for the order and size of G. Basic graph theoretic terms are taken from [1]. If uv is an edge of G then two vertices u and v are said to be adjacent. If $uv \in E(G)$, then u is v's neighbour and the set of v's neighbours are denoted by N(v) and degree of $v \in V$ has degree $\deg(v) = |N(v)|$. If $\deg(v) = n - 1$, a vertex v is referred to as a universal vertex. A vertex v is called an extreme vertex if G[N(v)] is complete. The subgraph induced by a set S of vertices of a graph G is denoted by G[S] with V(G[S]) = s and $E(G[S]) = \{uv \in E(G): u, v \in S\}$. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. A vertex x is said to lie on a u - v geodesic P if x is a vertex of P including the vertices u and v.

A chord of a path P is an edge which connects two non-adjacent vertices of P. An u - v path is called a monophonic path if it is a chordless path. The monophonic distance $d_m(u, v)$ from u to v is defined as the length of a longest u - v monophonic path in G. An u - v

monophonic path of length $d_m(u, v)$ is called a u - v monophonic. The monophonic eccentricity $e_m(v)$ of a vertex v in G is the maximum monophonic distance from v and a vertex of G, (i.e). $e_m(v) = max\{d_m(v, u) : u \in V\}$. The minimum monophonic eccentricity among the vertices of G is the monophonic radius, $rad_m G$ and the maximum monophonic eccentricity is its monophonic diameter, $diam_m G$. We denote $rad_m(G)$ by r_m and $diam_m G$ by d_m . Two vertices u and v of G are monophonic antipodal vertex if $d_m(u, v) = d_m$. A vertex v is called a monophonic peripheral vertex of G, if $e_m(v) = d_m$. The monophonic distance of a connected graph was studied by Santhakumaran [2]. For two vertices u and v, the closed interval J[u, v] consists of all the vertices lying in a u - v monophonic path including the vertices u and v. If u and v are adjacent, then $J[u, v] = \{u, v\}$. For a set M of vertices, let $J[M] = \bigcup_{u,v \in M} J[u, v]$. Then certainly $M \subseteq J[M]$. A set $M \subseteq V(G)$ is called a monophonic set of G if J[M] = V. The monophonic number m(G) of G is the minimum order of its monophonic sets and any monophonic set of order m(G) is called a m-set of G. The monophonic number of a graph was studied in [3,4,5,6].

A subset $S \subseteq V(G)$ is called a dominating set if every vertex $v \in V(G) \setminus S$ is adjacent to a vertex $u \in S$. The domination number, $\gamma(G)$, of a graph G denotes the minimum cardinality of such dominating sets of G. A minimum dominating set of a graph G is hence often called as a γ -set of G. The domination concept was studied by Haynes, Hedetniemi and Slater [7]. A subset $D \subseteq V$ is called a global dominating set in G if D is a dominating set of both G and \overline{G} . The global domination number $\overline{\gamma}(G)$ is the minimum cardinality of a global dominating sets in G. The concept of global domination in graph was introduced by Sampathkumar [8] and Vaidya and Pandit haave studies global domination and its properties [9, 10]. A set $M \subseteq V$ is said to be a monophonic global dominating set of G if M is both a monophonic set and a global dominating set of G. The minimum cardinality of a monophonic global dominating set of G is the monophonic global domination number of G and is denoted by $\overline{\gamma}_m(G)$. A monophonic global dominating set of cardinality $\overline{\gamma}_m(G)$ is called a $\overline{\gamma}_m$ -set of G. Throughout the paper, G denotes a connected graph at least two vertices. The following theorem is used in the sequel.

Theorem 1.1. [11] Each extreme vertex of a connected graph *G* belongs to every monophonic global dominating set of G.

2 The Upper Monophonic Global Domination Number of a Graph

Definition 2.1. A monophonic global dominating set of G is called a minimal monophonic

global dominating set of *G* if no proper subset of *M* is a monophonic global dominating set of *G*. The maximum cardinality of a minimal monophonic global dominating set of *G* is the upper monophonic global dominating set of *G*, denoted by $\bar{\gamma}_m^+(G)$.

Example 2.2. For the graph *G* given in Figure 2.1, $M_1 = \{v_1, v_2, v_3\}, M_2 = \{v_1, v_3, v_4\},$ $M_3 = \{v_1, v_3, v_5\}, M_4 = \{v_1, v_3, v_6\}, M_5 = \{v_1, v_5, v_6\}, M_6 = \{v_3, v_5, v_6\}$ and $M_7 = \{v_2, v_4, v_5, v_6\}$ are the only seven minimal monophonic global dominating sets of *G* so

that $\bar{\gamma}_m^+(G) \ge 4$. It is easily verified that no 5-element subset of *V* is a minimal monophonic global dominating set of *G*, and thus $\bar{\gamma}_m^+(G) = 4$.

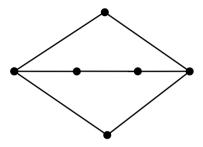


Figure 2.1

Observation 2.3. Let *G* be a connected graph of order $n \ge 2$. Then

(i) Each extreme vertex of a graph G belongs to every minimal monophonic global dominating set of G. In particular, each end-vertex of G belongs to every minimal monophonic global dominating set of G.

(ii) Each universal vertex of *G* belongs to every minimal monophonic global dominating set of *G*.

(iii) Let G be a connected graph and v a cut vertex of G. If M is a minimal monophonic global dominating set of G, then every component of G - v contains an element of M.

(iv) For a connected graph G order $n \ge 2, 2 \le \overline{\gamma}_m(G) \le \overline{\gamma}_m^+(G) \le n$.

(v) For a connected graph G order $n \ge 2$, $\bar{\gamma}_m(G) = n$ if and only if $\bar{\gamma}_m^+(G) = n$.

(vi) For the star $G = K_{1,n-1}$ $(n \ge 3)$, $\overline{\gamma}_m(G) = \overline{\gamma}_m^+(G) = n$.

(vii) For the complete graph $G = K_n$, $\bar{\gamma}_m(G) = \bar{\gamma}_m^+(G) = n$.

Theorem 2.4. Let G be a connected graph of order $n \ge 2$. If $\bar{\gamma}_m^+(G) = n$, then $\bar{\gamma}_m(G) = n$. Proof: This follows from observation 2.3 (iv) and (v).

Remark 2.5. The converse of Theorem 2.4 need not be true. For the graph *G* given in Figure 2.2, $M_1 = \{v_1, v_2, v_3\}$ is a $\bar{\gamma}_m$ - set of *G* and $M_2 = \{v_1, v_2, v_4, v_5\}$ is a minimal

monophonic global dominating set of G so that $\bar{\gamma}_m(G) = 3$ and $\bar{\gamma}_m^+(G) = 4$.

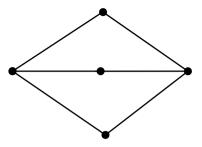


Figure 2.2

Theorem 2.6. For the path $G = P_n$, $(n \ge 4)$, $\bar{\gamma}_m^+(G) = \lceil \frac{n}{2} \rceil$. Proof: Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{v_i v_{i+1} / 1 \le i \le n-1\}$. We prove this theorem by considering two cases.

Case 1: *n* is even.

Let n = 2k $(k \ge 2)$. Let $M = \{v_1, v_3, v_5, ..., v_{2k-2}, v_{2k}\}$. Then M is a minimal monophonic global dominating set of G and so $\bar{\gamma}_m^+(G) \ge k = \frac{n}{2}$. We prove that $\bar{\gamma}_m^+(G) = \frac{n}{2}$. Suppose this is not the case. Then there exists a minimal monophonic global dominating set M' such that $|M'| \ge \frac{n}{2} + 1$. Hence there exists $v_l v_{l+1} \in M'$, where $1 \le l \le n - 1$. By Observation 2.3 (i), $v_1, v_n \in M'$. Without loss of generality, let us assume that $v_1 \ne v_l$ and $v_l \ne v_n$. Then $M' - \{v_l\}$ is a monophonic global dominating set of G, which is a contradiction to M' a minimal monophonic global dominating set of G. Therefore $\bar{\gamma}_m^+(G) = \lfloor \frac{n}{2} \rfloor$. Case 2: n is odd.

Let n = 2k + 1. Let $M = \{v_1, v_3, v_5, ..., v_{2k-1}, v_{2k+1}\}$ is a minimal monophonic global dominating set of *G* and so $\bar{\gamma}_m^+(G) \ge [\frac{n}{2}]$. Using similar argument as in Case (i), we prove that $\bar{\gamma}_m^+(G) = [\frac{n}{2}]$.

Theorem 2.7. For the cycle $G = C_n$ $(n \ge 4)$, $\bar{\gamma}_m^+(G) = \lfloor \frac{n}{2} \rfloor$.

Proof: The proof is similar to the proof of Theorem 2.6.

Theorem 2.8. For the fan graph $G = K_1 + P_{n-1}$ $(n \ge 4)$, $\overline{\gamma}_m^+(G) = 4$.

Proof: If n = 4, then the result follows from Observation 2.3 (i) and (ii). So, let $n \ge 5$. Let $V(K_1) = \{x\}$ and $V(P_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Let $M = \{x, v_1, v_{n-1}, y\}$, where $y \in \{v_2, v_3, ..., v_{n-2}\}$. Then M is a minimal monophonic global dominating set of G and so $\bar{\gamma}_m^+(G) \ge 4$. We prove that $\bar{\gamma}_m^+(G) = 4$. Suppose this is not the case. Then there exists a minimal

monophonic global dominating set M' such that $|M'| \ge 5$. By Observation 2.3(i) and (ii) $x, v_1, v_{n-1} \in M'$. Hence it follows that $\subset M'$, which is a contradiction to M' a minimal monophonic global dominating set of G, Therefore $\bar{\gamma}_m^+(G) = 4$.

Theorem 2.9. For the complete bipartite $G = K_{r,s}$ $(1 \le r \le s)$,

 $\bar{\gamma}_m^+(G) = \begin{cases} r+s, & \text{if } r=1, s \ge 1\\ s+1, & \text{otherwise} \end{cases}$

Proof: Let $U = \{u_1, u_2, ..., u_r\}$ and $W = \{w_1, w_2, ..., w_s\}$ be the two bipartite sets of *G*. Case 1: If $r = 1, s \ge 1$. This follows from Observation 2.3(i). Case 2: $2 \le r < s$.

Let $M = W \cup \{x\}$, where $x \in U$. Then M is a monophonic global dominating set of G. We prove that M is a minimal global dominating set of G. Suppose this is not the case. Then there exists a monophonic global dominating set M' such that $M' \subset M$.

Let v be a vertex of G such that $v \in M$ and $v \in M'$. If v = x, then M' is not a global dominating set of G. If $v = w_i$ for some i $(1 \le i \le s)$, then $v \notin J[M']$ and so M' is not a monophonic set of G, which is a contradiction. Therefore M is a minimal global dominating set of G and so $\bar{\gamma}_m^+(G) \ge s + 1$. Note that $M_1 = U \cup \{y\}$, where $y \in W$ and $M_{ijkl} =$ $\{u_i, u_j, w_k, w_l\}(1 \le i \le j \le r)$ $(1 \le k \le l \le s)$ are the minimal monophonic global dominating set of G. We prove that $\bar{\gamma}_m^+(G) = s + 1$. Suppose this is note the case. Then there exists a minimal monophonic global dominating set S such that $|S| \ge s + 2$. Then $S \subset U \cup$ W. Since $|S| \ge s + 2$, either $M_1 \subset S$ or $M_{ijkl} \subset S$ for $(1 \le i \le j \le r), (1 \le k \le l \le s)$, which is a contradiction to S a minimal monophonic global dominating set of G. Therefore $\bar{\gamma}_m^+(G) = s + 1$.

Case 3: r = s. Using similar argument are as Case 2, we show that $\bar{\gamma}_m^+(G) = r$.

Theorem 2.10. For the wheel graph $G = K_1 + C_{n-1}$, $(n \ge 4)$, $\bar{\gamma}_m^+(G) = 4$.

Proof: Let $V(K_1) = \{x\}$ and $V(C_{n-1}) = \{v_1, v_2, ..., v_{n-1}\}$. Let $M = \{x, u, v, w\}$, where $u, v, w \in V(C_{n-1})$. Then M is a minimal monophonic global dominating set of G and so $\bar{\gamma}_m^+(G) \ge 4$. We prove that $\bar{\gamma}_m^+(G) = 4$. Suppose this is not the case. Then there exists a minimal monophonic global dominating set M' such that $|M'| \ge 5$. By Observation 2.3(ii), $x \in M'$. Since $M' - \{x\} \subset V(C_{n-1})$, We have $M \subset M'$, which is a contradiction to M' a minimal monophonic global dominating set of G. Therefore $\bar{\gamma}_m^+(G) = 4$.

Theorem 2.11. For any positive integers a and b with $2 \le a \le b$, there exists a connected graph G such that $\bar{\gamma}_m(G) = a$ and $\bar{\gamma}_m^+(G) = b$.

Proof: If a = b, let $G = K_{1,a-1}$. Then by Observation 2.3 (vi), $\bar{\gamma}_m(G) = \bar{\gamma}_m^+(G) = a$. So, let

 $2 \le a < b$. Let $V(K_2) = \{x, y\}$ and $V(K_{b-a+1}) = \{u_1, u_2, \dots, u_{b-a+1}\}$. Let $H = K_{b-a+1} + K_2$. Let G be the graph in Figure 2.3 obtained from H by adding a-1 new vertices z_1, z_2, \dots, z_{a-1} and joining each vertex z_i $(1 \le i \le a-1)$ with y. Let $Z = \{z_1, z_2, \dots, z_{a-1}\}$. By Observation 2.3 (i), Z is a subset of every monophonic global dominating set of G. Since $J[Z] \ne V, Z$ is not a monophonic global dominating set of G and so $\overline{\gamma}_m(G) \ge a$. Let $M = Z \cup \{x\}$. Then M is a monophonic global dominating set of G so that $\overline{\gamma}_m(G) = a$.

Next, we prove that $\bar{\gamma}_m^+(G) = b$. Let $T = Z \cup \{u_1, u_2, \dots, u_{b-a+1}\}$. Then T is is a monophonic global dominating set of G. We show that T is a minimal monophonic global dominating set of G. Let W be any proper subset of T. Then there exist at least one vertex say $v \in T$ such that $v \notin W$. By Observation 2.3 (i), $v \neq z_i$ for all $i (1 \leq i \leq a-1)$. Now, assume that $v = u_j$ for some $j (1 \leq j \leq b-a + 1)$. Then $u_i \notin J[W]$ and so W is not a monophonic global dominating set of G. Hence T is a minimal monophonic global dominating set of G. Hence T is a minimal monophonic global dominating set of G. Hence T is a minimal monophonic global dominating set of G so that $\bar{\gamma}_m^+(G) \geq b$.

Now, we show that there is no minimal monophonic global dominating set *S* of *G* with $|S| \ge b + 1$. Suppose that there exists a minimal monophonic global dominating set *S* of *G* such that $|S| \ge b + 1$. Since |V(G)| = b + 2 and since *M* is a monophonic global dominating set of *G*, it follows that |S| = b + 1. It is easily seen that, $y \notin S$ and so $S = V(G) - \{y\}$. Since *M* is a monophonic global dominating set of *G*, it follows that *S* is not a minimal a monophonic global dominating set of *G*, which is a contradiction. Thus $\overline{\gamma}_m^+(G) = b$.

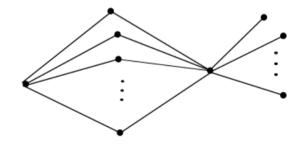


Figure 2.3

References

- 1. Buckley F., Harary F. Distance in graphs. Addition Wesley, CA. 1990.
- 2. Santhakumaran A.P., Titus P. Monophonic distance in graphs. Discrete Math. Algorithms Appl. 2011; 3(2): 159 169.
- 3. Dourado M.C., Fabio Protti and Jayme L., Szwarcter. Algorithmic aspects of monophonic convexity. Electron. Notes Discret. Math. 2008; 30: 177 182.

- John J., Panchali S. The upper monophonic number of a graph. Int. J. Math. Combin. 2010;
 4: 46 52.
- 5. John J., Stalin D., Arul Paul Sudhahar P. On the (M, D) number of a graph. Proyectiones J. Math. 2019; 38(2): 255 266.
- 6. Santhakumaran A.P., Titus P., Ganesamoorthy K. On the monophonic number of a graph. J. Appl. Math. Informatics. 2014; 32(1): 255 266.
- 7. Haynes T.W., Hedetniemi S.T., Slater P.J. Fundamentals of domination in graphs, Marcel Dekker. New York; 1998.
- Sampathkumar E. The global domination number of a graph. J. Math. Phys. Sci. 1989; 23: 377 - 385.
- Vaidya S.K., Pandit R.M. Some new results on global dominating sets. ISRN Discret. Math. 2012; 1 – 6.
- 10. Vaidya S.K and Vaidya R.M. Some results on global dominating sets. Proyecciones J. Math. 2013; 32(3): 235 244.
- 11. Selvi V., Sujin Flower V. The monophonic global domination number of a graph, J. Math. Comput. Sci. 2021; 11(5): 6007 6017.